Octahedron and Truncated Octahedron
Sabemos que este poliedro puede verse como formado por ocho medios cubos. Entonces sabemos calcular su volumen de un modo muy sencillo.
We can cut in half a cube by a plane and get a section that is a regular hexagon. Using eight of this pieces we can made a truncated octahedron.
Using eight half cubes we can make a truncated octahedron. The cube tesselate the space an so do the truncated octahedron. We can calculate the volume of a truncated octahedron.
En esta página vamos a calcular ese volumen de otro modo.
The volume of a truncated octahedron can be easily calculated if we know the volume of an octahedron. The volume of an octahedron of edge length 1 is:
We can calculate the volume of an octahedron of edge length 3: To calculate the volume of a truncated octahedron we have to remove to an octahedron of edge length 3 six pyramids. These six pyramids make 3 octahedra of edge length 1.
Además este poliedro es un sólido arquimediano. Pertenece a la segunda familia de poliedros más famosa. Sus caras son poliedros regulares no todos iguales. En este caso vemos que tiene 6 cuadrados y 8 hexágonos. Todos sus vértices tienen que ser iguales. Este es el desarrollo plano de esta figura:
Es un poliedro arquimediano que podemos ver como un octaedro al que se le han quitado seis pirámides en sus vértices. Por lo tanto, su nombre es octaedro truncado.
El volumen del octaedro se puede calcular a partir del octaedro truncado (que ya sabemos que tiene un volumen muy sencillo de calcular). Por otra parte, sabemos que hay una relación entre el volumen del octaedro de lado 3 y el de lado 1: El octaedro de lado 3 está formado por un octaedro truncado de lado 1 y 3 pares de pirámides. Cada par forma un octaedro de lado 1. Por lo tanto, podemos escribir: El volumen del octaedro de lado 1 es: Si sabemos el volumen del octaedro ya podemos calcular el volumen del tetraedro pues sabemos que es la cuarta parte. Hemos podido calcular el volumen del octaedro y el del tetraedro sin recurrir a la fórmula del volumen de la pirámide. Manipulando las construcciones de los poliedros y viendo sus propiedades. También hemos usado la relación entre los volúmenes de figuras semejantes.
REFERENCES
Hugo Steinhaus, Mathematical Snapshots, Dover Publications (third edition, 1999)
We can read some pages of this book in Google Books:
Mathematical Snapshots by Hugo Steinhaus.
Magnus Wenninger - 'Polyhedron Models', Cambridge University Press.
Peter R. Cromwell - 'Polyhedra', Cambridge University Press, 1999.
H.Martin Cundy and A.P. Rollet, 'Mathematical Models', Oxford University Press, Second Edition, 1961.
NEXT PREVIOUS MORE LINKS
We can cut in half a cube by a plane and get a section that is a regular hexagon. Using eight of this pieces we can made a truncated octahedron.
The volume of an octahedron is four times the volume of a tetrahedron. It is easy to calculate and then we can get the volume of a tetrahedron.
Using eight half cubes we can make a truncated octahedron. The cube tesselate the space an so do the truncated octahedron. We can calculate the volume of a truncated octahedron.
The first drawing of a plane net of a regular tetrahedron was published by Dürer in his book 'Underweysung der Messung' ('Four Books of Measurement'), published in 1525 .
Some properties of this platonic solid and how it is related to the golden ratio. Constructing dodecahedra using different techniques.
Leonardo da Vinci made several drawings of polyhedra for Luca Pacioli's book 'De divina proportione'. Here we can see an adaptation of the cuboctahedron.
Leonardo da Vinci made several drawings of polyhedra for Luca Pacioli's book 'De divina proportione'. Here we can see an adaptation of the dodecahedron.
Leonardo da Vinci made several drawings of polyhedra for Luca Pacioli's book 'De divina proportione'. Here we can see an adaptation of the stellated octahedron (stella octangula).
Some properties of this platonic solid and how it is related to the golden ratio. Constructing dodecahedra using different techniques.
The stellated octahedron was drawn by Leonardo for Luca Pacioli's book 'De Divina Proportione'. A hundred years later, Kepler named it stella octangula.
The compound polyhedron of a cube and an octahedron is an stellated cuboctahedron.It is the same to say that the cuboctahedron is the solid common to the cube and the octahedron in this polyhedron.
When you truncate a cube you get a truncated cube and a cuboctahedron. If you truncate an octahedron you get a truncated octahedron and a cuboctahedron.
|