Pitagoras


We can see Pythagoras' Theorem in a tiling. It is a graphic demonstration of Pythagoras' Theorem we can see in some floor made using squares of two different sizes.

Archimedes


Archimedes show us in 'The Method' how to use the lever law to discover the area of a parabolic segment.


In his book 'On Conoids and Spheroids', Archimedes calculated the area of an ellipse. We can see an intuitive approach to Archimedes' ideas.


In his book 'On Conoids and Spheroids', Archimedes calculated the area of an ellipse. It si a good example of a rigorous proof using a double reductio ad absurdum.

Leonardo da Vinci's drawings for Luca Pacioli's book 'De divina proportione'


Leonardo da Vinci made several drawings of polyhedra for Luca Pacioli's book 'De divina proportione'. Here we can see an adaptation of the dodecahedron.


Leonardo da Vinci made several drawings of polyhedra for Luca Pacioli's book 'De divina proportione'. Here we can see an adaptation of the truncated octahedron.


Leonardo da Vinci made several drawings of polyhedra for Luca Pacioli's book 'De divina proportione'. Here we can see an adaptation of the cuboctahedron.


Leonardo da Vinci made several drawings of polyhedra for Luca Pacioli's book 'De divina proportione'. Here we can see an adaptation of the stellated octahedron (stella octangula).


Leonardo da Vinci made several drawings of polyhedra for Luca Pacioli's book 'De divina proportione'. Here we can see an adaptation of the truncated tetrahedron.


Leonardo da Vinci made several drawings of polyhedra for Luca Pacioli's book 'De divina proportione'. Here we can see an adaptation of the octahedron.


Leonardo da Vinci made several drawings of polyhedra for Luca Pacioli's book 'De divina proportione'. Here we can see an adaptation of the rhombicuboctahedron.

Durer


In his book 'Underweysung der Messung' Durer draw a nonregular pentagon with ruler and a fixed compass. It is a simple construction and a very good approximation of a regular pentagon.


He studied transformations of images, for example, faces.

Kepler


Kepler used an intuitive infinitesimal approach to calculate the area of a circle.


Kepler was one mathematician who contributed to the origin of integral calculus. He used infinitesimal techniques for calculating areas and volumes.


Studying the volume of a barrel, Kepler solved a problem about maxima in 1615.

Cavalieri


Using Cavalieri's Principle we can calculate the volume of a sphere.

The Logarithm Function


Mercator published his famous series for the Logarithm Function in 1668. Euler discovered a practical series to calculate.
