Ángulo central e inscrito en una circunferencia
|
||
Dados dos puntos en una circunferencia, los radios desde el centro de la circunferencia a esos dos puntos forman un ángulo central. Un ángulo inscrito es un ángulo subtendido en un punto de la circunferencia por otros dos puntos de la circunferencia. Un ángulo inscrito está definido por dos cuerdas de una circunferencia que tienen un extremo común. Euclides enumera las siguientes proposiciones, entre otras, referidas a la circunferencia: III.20. En una circunferencia, el ángulo cuyo vértice está en el centro es el doble del ángulo cuyo vértice está en la circunferencia cuando los rayos que forman el ángulo cortan a la circunferencia en los misos dos puntos. Esta proposición también se llama Teorema del ángulo central: El ángulo central subtendido por dos puntos de una circunferencia es el doble que cualquier ángulo inscrito subtendido por esos dos puntos. III.21. En una circunferencia, una cuerda subtiende ángulos iguales cuando los vértices están en cualquier punto de uno de los dos arcos que determina la cuerda. III.32. Si desde el punto de contacto de una tangente a una circunferencia se traza una cuerda de ésta, el ángulo que forman la tangente y la cuerda es igual al ángulo que subtiende la cuerda y cuyo vértice está en cualquier punto de la pare de la circunferencia que queda en el lado distante de la cuerda. La demostración del Teorema del ángulo central se puede hacer distinguiendo varios casos. Podemos empezar viendo una aproximación interactiva de la demostración de esta propiedad de los ángulos central e inscrito en una circunferencia |Caso I. REFERENCIAS
Los Elementos de Euclides
SIGUIENTE MÁS ENLACES
Demostración interactiva de la propiedad de los ángulos central e inscrito en una circunferencia. Caso II: Cuando una cuerda de las que forman el ángulo inscrito es un diámetro.
Demostración interactiva de la propiedad de los ángulos central e inscrito en una circunferencia. Prueba del caso general.
Usando regla y compás podemos dibujar ángulos de 15 grados. Son ejemplos básicos de las propiedades de los ángulos central e inscrito en una circunferencia.
A partir de cada punto de la circunferencia circunscrita a un triángulo se obtiene una recta llamada recta de Simson-Wallace o recta de Simson.
Demostración interactiva de que los tres puntos que determinan cada recta de Wallace-Simson están alineados.
Podemos dibujar un pentágono regular dado uno de sus lados construyendo la razón áurea con regla y compás.
En su libro 'Underweysung der Messung' Durero dibujó un pentágono no regular con regla y compás con apertura fija. Es una construcción simple y una muy buena aproximación de un pentágono regular.
|