matematicas visuales home | visual math home
Conos cortados por planos oblicuos


En la página sobre conos truncados por un plano paralelo a la base hemos visto que estos cuerpos geométricos se pueden desarrollar en un plano.

El plano de sección puede no ser paralelo a la base, es lo que vamos a ver ahora.

El principal objetivo de esta página es mostrar cómo un cono cortado por un plano oblicuo puede desarrollarse en un plano.

Cono truncado por un plano oblicuo: un ejemplo | matematicasVisuales
Cono truncado por un plano oblicuo: desarrollándose en un plano | matematicasVisuales
Cono truncado por un plano oblicuo: desarrollo plano | matematicasVisuales

Este es otro ejemplo:

Cono truncado por un plano oblicuo: otro ejemplo de desarrollo plano | matematicasVisuales

MÁS ENLACES

Alberto Durero y las elipses: secciones de un cono.
Durero fue el primero en publicar en alemán un método para dibujar elipses como secciones de un cono.
Alberto Durero y las elipses: las elipses tienen dos ejes de simetría.
Durero nos mostró un método excelente para dibujar elipses pero cometió un pequeño error. La intuición parece decirnos que la sección de un cono tiene forma de huevo. Podemos probar, usando conceptos básicos, que la elipse tiene dos ejes de simetría.
La elipse y sus focos
Una elipse tiene dos focos y la suma de las distancias de cualquier punto de la elipse a los dos focos es una constante.
Ecuación de la elipse
Transformando una circunferencia podemos obtener una elipse (como hizo Arquímedes para calcular su área). A partir de la ecuación de la circunferencia deducimos la de la elipse.
Arquímedes y el área de la elipse: una aproximación intuitiva
En su libro 'Sobre Conoides y Esferoides', Arquímedes calculó el área de la elipse. Podemos ver una aproximación intuitiva a las ideas de Arquímedes.
Arquímedes y el área de la elipse: demostración
En su libro 'Sobre Conoides y Esferoides', Arquímedes calculó el área de la elipse. Es un ejemplo de demostración rigurosa por doble reducción al absurdo.
Elipsógrafo: un aparato mecánico para dibujar elipses
El elipsógrafo es un aparato mecánico que se usa para dibujar elipses.
Elipsógrafo: un aparato mecánico para dibujar elipses (2)
Si un segmento de longitud fija se mueve de modo que sus extremos están en dos rectas perpendiculares, cualquier punto del segmento traza una elipse.
Desarrollos planos de cuerpos geométricos (4): Cilindros cortados por un plano oblicuo
La sección de un cilindro por un plano es una elipse. Estas figuras se llaman segmentos cilíndricos o cilindros truncados y pueden desarrollarse en el plano.
Desarrollos planos de cuerpos geométricos (6): Pirámides truncadas por un plano oblicuo
Desarrollos planos de pirámides truncadas por un plano oblicuo.
Desarrollos planos de cuerpos geométricos (5): Pirámides y troncos de pirámide
Desarrollos planos de pirámides y de troncos de pirámide de base regular con diferentes números de lados.
Desarrollos planos de cuerpos geométricos (3): Cilindros
Los cilindros son superficies de revolución que pueden desarrollarse en un plano. Se explica cómo calcular la superficie lateral y total de un cilindro.
Desarrollos planos de cuerpos geométricos (2): Prismas cortados por un plano oblicuo
Prismas con base regular o irregular cortados por un plano no paralelo a la base y sus desarrollos planos.
Desarrollos planos de cuerpos geométricos (1): Prismas y sus desarrollos planos
Estudiamos los prismas y vemos cómo se pueden desarrollar en un plano. Se explica el cálculo del área lateral de un prisma recto.