Densidad del empaquetamiento óptimo de esferas
Cuando Kepler trató de contestar a la cuestión técnica que le planteó Harriot sobre cómo almacenar balas de cañon en un barco pesó que la manera tradicional que usan los fruteros para apilar naranjas era óptima. Esta afirmación es lo que conocemos conjetura de Kepler. Fue muy difícil de probar. Al final del siglo XX, Thomas Hales encontró la demostración con la ayuda de ordenadores.
Kepler relaciona el dodecaedro rómbico con el apilamiento de balas de cañón. Si se comprime un determinado apilamiento, las balas se deforman en este poliedro.
Lo que no es tan complicado es calcular la densidad del empaquetamiento óptimo de esferas. De hecho, será muy sencillo si usamos algunas propiedades básicas del dodecaedro rómbico. Para calcular la densidad del empaquetamiento solemos considear una 'celdad unidad', un poliedro que tesele el espacio. Típicamente usamos prismas, en particular, cubos. Dentro de esta celda unidad habrá alguna esfera o partes de esferas. Podremos calcular la proporción entre el volumen de las partes ocupadas por las esferas y el volumen de la celdad unidad. En algunos casos no es tan sencillo visualizar qué partes de esfera hay dentro de la celda unidad. Con nuestro conocimiento del dodecaedro rómbico, esta tarea va a resultar bastante sencilla. Por dos razones: En primer lugar, vamos a considerar nuestro dodecaedro rómbico la celda unidad. Dentro de este poliedro solo hay una esfera. En segundo lugar, nos resulta sencillo calcular el volumen de la celda unidad y el volumen de la esfera. Secondly, it is easy to calculate the volume of the unit cell and the volume of the sphere. Para mostrar esta situación fabriqué un poliedro semitransparente y puse dentro una bola roja: Para calcular el volumen del dodecaedro rómbico sólo tenemos que saber que su volumen es el doble del volumen del cubo inscrito. Para simplificar, podemos suponer que el cubo inscrito tiene arista igual a 2. Entonces:
El volumen de nuestra celda unidad es el doble del volumen del cubo. Llamaremos a ese volumen D. De este modo, no puede ser más sencillo calcular el volumen de la celda unidad. Ahora vamos a calcular el volumen de la esfera. Si nos fijamos en el modelo, nos podemos dar cuenta de que la esfera inscrito toca las aristas del cubo inscrito, es la esfera media (o interesfera) del cubo. Las 12 aristas del cubo son tangentes a esta esfera. Podemos calcular el radio de esta esfera: Sea S el volumen de la esfera: Entonces, la densidad del empaquetamiento óptimo de esferas es: Then, the density of the optimal sphere packing is: Un cálculo bastante sencillo.
REFERENCIAS
Johannes Kepler - 'Strena seu De Nive Sexangula' ('Regalo de Año nuevo. Sobre el copo de nieve hexagonal', Traducción y notas de
Ana García Azcárate y Ángel Requena Fraile. Editorial Aviraneta, 2011. Este libro se puede descargar gratuitamente gracias a la generosidad
de sus autores a través del excelente sitio web de Ángel Requena 'Turismo Matemático' en su sección
Turismo Matemático. Libros descargables.
Johannes Kepler - 'De Nive Sexangula' (Tenemos una versión bilingüe en latin e inglés en
'The Six Cornered Snowflake: a New Year's gif' - Paul Dry Books, Philadelphia, Pennsylvania, 2010.
Con notas y comentarios muy interesantes de Owen Gingerich y Guillermo Bleichmar. Las ilustraciones las realizó la matemática española Capi Corrales Rodrigáñez.
D'Arcy Thompson - On Growth And Form - Cambridge University Press, 1942. Traducción española de Ana María Rubio Díez y
Mario X. Ruiz-González publicada por Cambridge University Press.
Hugo Steinhaus - Mathematical Snapshots - Oxford University Press - Third Edition. Una traducción española fue hecha por Luis Bou García y fue publicada por la Editorial
Salvat con el título 'Instantáneas Matemáticas' en 1986.
Magnus Wenninger - 'Polyhedron Models', Cambridge University Press.
Peter R. Cromwell - 'Polyhedra', Cambridge University Press, 1999.
H.Martin Cundy and A.P. Rollet, 'Mathematical Models', Oxford University Press, Second Edition, 1961.
W.W. Rouse Ball and H.S.M. Coxeter - 'Matematical Recreations & Essays', The MacMillan Company, 1947.
W. Hope-Jones, 'The Rhombic Dodecahedron for the Young', The Mathematical Gazette, 1936.
Colin Maclaurin, 'On the Bases of the Cells wherein the Bees deposite their Honey', 1743.
D'Arcy Thompson, 'On Growth And Form' - Cambridge University Press, 1942.
L. Fejes Tóth, 'What the bees know and what they do not know', Bull. Amer. Math. Soc. 70 (1964). In
Project Euclid
D. Wallo, V. Duris, L. Rumanova, 'Geometry of bee cells rediscovered', The Electronic Journal of Mathematics and Technology.
Hermann Weil, 'Symmetry', pp. 83-92, Princeton University Press, 1952.
SIGUIENTE ANTERIOR MÁS ENLACES
La Humanidad ha estdo siempre fascinada por cómo las abejas construyen sus panales. Kepler relacionó la forma de los panales con un poliedro que llamamos dodecaedro rómbico.
Queremos cerrar un prisma hexagonal como lo hacen las abejas, usando tres rombos iguales. ¿Qué forma deben tener estos tres rombos para cerrar el prisma con la menor superficie?
Con motivo del Día internacional de las Matemáticas 2020, que se celebra el 14 de Abril, hemos preparado una exposición homenaje a Kepler en relación con el dodecaedro rómbico.
Añadiendo seis pirámides a un cubo podemos construir nuevos poliedros que tienen veinticuatro caras triángulares. Para unas determinadas pirámides obtenemos un dodecaedro rómbico que tiene doce caras rómbicas.
Podemos construir un dodecaedro rómbico añadiendo seis pirámides a un cubo. Este hecho tiene interesantes consecuencias.
Una cadena de seis pirámides puede plegarse hacia dentro y formar un cubo y puede plegarse hacia fuera y colocarse sobre otro cubo y formar un dodecaedro rómbico.
El ángulo obtuso de las caras rómbicas del dodecaedro rómbico se conoce como ángulo de Maraldi. Solo se necesita un poco de trigonometría básica parar calcularlo.
Tetraxis es un puzle muy interesante, sencillo y bonito, diseñado por Jane y John Kostick. Estudiaremos algunas propiedades de este juego y su relación con el dodecaedro rómbico. Plantillas para construir un Tetraxis con cartulina e imanes. El rompecabezas hecho con impresión 3D.
Material para la sesión sobre construcción de poliedros (Zaragoza el 9 de Mayo de 2014). Empezaremos con el tetraedro, el cubo y el octaedro y presentaremos el cuboctaedro y el dodecaedro rómbico. Relacionaremos este poliedro con los panales de abeja. Construimos una cajita que es un dodecaedro rómbico.
Material para la sesión del TTM (Zaragoza, el 18 de Octubre de 2019). El objetivo principal es disfrutan construyendo poliedros, en esta ocasión construiremos una cajita que es un dodecaedro rómbico. Estudiaremos la relación de este poliedro con el cubo, el octaedro y el cuboctaedro.
El papel que solemos utilizar tiene un tamaño estándar. Estos rectángulos de papel, que llamamos DIN A, son semejantes y cada tamaño se obtiene del anterior partiéndolo por la mitad.
El cuboctaedro es un sólido arquimediano que se puede obtener a partir de un cubo truncando sus vértices.
El cuboctaedro es un sólido arquimediano que se puede obtener a partir de un cubo truncando sus vértices. También se obtiene a partir de un octaedro truncando sus vértices
El volumen del octaedro es 4 veces el del tetraedro. El cálculo del volumen del octaedro es sencillo y así podemos obtener el volumen del tetraedro.
El octaedro truncado es un sólido arquimediano que se puede obtener a partir de un octaedro truncando sus vértices. Su volumen se puede calcular a partir del volumen del octaedro.
El octaedro truncado es un poliedro que tiene la propiedad de teselar el espacio: con poliedros congruentes podemos rellenar el espacio sin dejar huecos.
Leonardo da Vinci realizó varios dibujos de poliedros para La Divina Proporción de Luca Pacioli. Aquí podemos ver una adaptación de su octaedro truncado.
Leonardo da Vinci realizó varios dibujos de poliedros para La Divina Proporción de Luca Pacioli. Aquí podemos ver una adaptación de su cuboctaedro.
Achaflanando un cubo, truncando sus aristas, podemos obtener un poliedro semejante (pero no igual) al octaedro truncado. También podemos obtener un dodecaedro rómbico.
Se puede inscribir un cubo en un dodecaedro y podemos ver el dodecaedro como un cubo con seis 'tejados' añadidos uno en cada cara. Estos seis tejados del dodecaedro se pueden plegar en un cubo.
|