El octaedro truncado tesela el espacio
El octaedro truncado es un sólido arquimediano.Sus caras son hexágonos y cuadrados. Se puede obtener truncando adecuadamente un octaedro.
El octaedro truncado es un sólido arquimediano que se puede obtener a partir de un octaedro truncando sus vértices. Su volumen se puede calcular a partir del volumen del octaedro.
Tiene la sorprendente propiedad de rellenar completamente el espacio. Es decir, que uniendo octaedros truncados del mismo tamaño podemos llenar el espacio sin dejar huecos entre ellos. Comparte esta propiedad con otros poliedros, por ejemplo, el cubo.
Con medios cubos podemos formar el octaedro truncado. El cubo tesela el espacio y también el octaedro truncado. También calculamos su volumen.
Escribe Steinhaus: "La posibilidad de llenar totalmente el espacio con poliedros congruentes plantea la interesante cuestión de lograr que solamente haya en cada vértice 4 poliedros congruentes (es imposible tener sólo 3)." El octaedro truncado es la solución. "No existe ningún otro poliedro que tenga estas propiedades y dé, por consiguiente, la más sencilla descomposición del espacio en partes congruentes". (Steinhaus)
REFERENCIAS
Hugo Steinhaus, Instantáneas matemáticas (pags. 187-192),Editorial Salvat (1986)
Podemos leer algunas páginas de este libro en Google Books (en inglés):
Mathematical Snapshots.
Magnus Wenninger - 'Polyhedron Models', Cambridge University Press.
Peter R. Cromwell - 'Polyhedra', Cambridge University Press, 1999.
H.Martin Cundy and A.P. Rollet, 'Mathematical Models', Oxford University Press, Second Edition, 1961.
SIGUIENTE ANTERIOR MÁS ENLACES
Podemos cortar un cubo por la mitad con un plano de modo que la sección sea un hexágono regular. Ocho de estos medios cubos forman un octaedro truncado.
Leonardo da Vinci realizó varios dibujos de poliedros para La Divina Proporción de Luca Pacioli. Aquí podemos ver una adaptación de su octaedro truncado.
El volumen del octaedro es 4 veces el del tetraedro. El cálculo del volumen del octaedro es sencillo y así podemos obtener el volumen del tetraedro.
El primer dibujo del desarrollo plano del tetraedro regular fue publicado por Durero en su libro 'Underweysung der Messung' ('Los cuatro libros de la medida'), el año 1525.
Algunas propiedades de este sólido platónico y su relación con la razón áurea. Construcción de dodecaedros (y otros poliedros relacionados) usando diferentes técnicas.
Leonardo da Vinci realizó varios dibujos de poliedros para La Divina Proporción de Luca Pacioli. Aquí podemos ver una adaptación de su cuboctaedro.
Leonardo da Vinci realizó varios dibujos de poliedros para La Divina Proporción de Luca Pacioli. Aquí podemos ver una adaptación de su dodecaedro.
Leonardo da Vinci realizó varios dibujos de poliedros para La Divina Proporción de Luca Pacioli. Aquí podemos ver una adaptación de su octaedro estrellado (que Kepler llamó stella octangula).
El octaedro estrellado fue dibujado por Leonardo para el libro 'La divina proporción' de Luca Pacioli. Años más tarde, Kepler nombró este poliedro stella octangula.
El poliedro compuesto por un cubo y un octaedro es un cuboctaedro estrellado. O lo que es lo mismo, el cuboctaedro es el sólido común al cubo y al octaedro en este poliedro.
Truncando un cubo podemos obtener un cubo truncado y un cuboctaedro. Si truncamos un octaedro podemos conseguir un octaedro truncado y, también, un cuboctaedro.
|