matematicas visuales home | visual math home

Ya hemos visto que el dodecaedro rómbico se puede construir añadiendo seis pirámides a un cubo. Ya hemos estudiado varias consecuencias de este hecho.

Dodecaedro rómbico (4): Dodecaedro rómbico formado por un cubo y seis sextos de cubo
Podemos construir un dodecaedro rómbico añadiendo seis pirámides a un cubo. Este hecho tiene interesantes consecuencias.

En esta página vamos a ver otra propiedad muy interesante: el dodecaedro rómbico rellena o tesela el espacio, sin dejar huecos.

Hugo Steinhaus escribió: "Ya hemos mencionado el teselamiento de todo el espacio con cubos. Podemos obtener otro teselado de este tipo con el siguiente procedimiento: hacemos los cubos alternativamente blancos y negros para obtener una especie de tablero de ajedrez y quitamos los cubos negros. Descomponemos cada uno de estos espacios vaciós en seis pirámides de base cuadrada con un vértice común en el centro del espacio vacío. Si consideramos un solo cubo blanco con 6 pirámides con sus bases en él podemos ver un dodecaedro rómbico con un cubo inscrito en él. Es obvio que con esta procedimiento hemos rellenado todo el espacio con dodecaedros rómbicos congruentes. (...) Los vértices son de dos tipos: (1) vértices en los que se encuentran 4 sólidos; (2) vértices en lo que se encuentran 6 sólidos." (Steinhaus, pag. 185)

Dodecaedro rómbico es un poliedro que rellena el espacio, teselación | matematicasvisuales
Dodecaedro rómbico es un poliedro que rellena el espacio, teselación | matematicasvisuales
Dodecaedro rómbico es un poliedro que rellena el espacio, teselación | matematicasvisuales
Dodecaedro rómbico es un poliedro que rellena el espacio, teselación | matematicasvisuales
Dodecaedro rómbico es un poliedro que rellena el espacio, teselación | matematicasvisuales
Dodecaedro rómbico es un poliedro que rellena el espacio, teselación | matematicasvisuales

Otro ejemplo interesante de poliedro que tesela el espacio es el octaedro truncado.

El volumen del octaedro truncado
El octaedro truncado es un sólido arquimediano que se puede obtener a partir de un octaedro truncando sus vértices. Su volumen se puede calcular a partir del volumen del octaedro.
El octaedro truncado tesela el espacio
El octaedro truncado es un poliedro que tiene la propiedad de teselar el espacio: con poliedros congruentes podemos rellenar el espacio sin dejar huecos.

Zome es una herramienta perfecta para construir esta teselación: los dodecaedros rómbicos en amarillo, cubos en azul y el octaedro en verde.

Dodecaedro rómbico es un poliedro que rellena el espacio, teselación, construcción con Zome | matematicasvisuales
Dodecaedro rómbico es un poliedro que rellena el espacio, teselación, construcción con Zome | matematicasvisuales
Dodecaedro rómbico es un poliedro que rellena el espacio, teselación, construcción con Zome | matematicasvisuales

Puedes jugar con otra versión de esta aplicación interecativa para ver que el dodecaedro rómbico tesela el espacio.

Dodecaedro rómbico es un poliedro que rellena el espacio, teselación | matematicasvisuales
Dodecaedro rómbico es un poliedro que rellena el espacio, teselación | matematicasvisuales
Dodecaedro rómbico es un poliedro que rellena el espacio, teselación | matematicasvisuales
Dodecaedro rómbico es un poliedro que rellena el espacio, teselación | matematicasvisuales
Dodecaedro rómbico es un poliedro que rellena el espacio, teselación | matematicasvisuales
Dodecaedro rómbico es un poliedro que rellena el espacio, teselación | matematicasvisuales

REFERENCIAS

Johannes Kepler - 'De Nive Sexangula' (Tenemos una versión bilingüe en latin e inglés en 'The Six Cornered Snowflake: a New Year's gif' - Paul Dry Books, Philadelphia, Pennsylvania, 2010. Con notas y comentarios muy interesantes de Owen Gingerich y Guillermo Bleichmar. Las ilustraciones las realizó la matemática española Capi Corrales Rodrigáñez.
D'Arcy Thompson - On Growth And Form - Cambridge University Press, 1942. Traducción española de Ana María Rubio Díez y Mario X. Ruiz-González publicada por Cambridge University Press.
Hugo Steinhaus - Mathematical Snapshots - Oxford University Press - Third Edition. Una traducción española fue hecha por Luis Bou García y fue publicada por la Editorial Salvat con el título 'Instantáneas Matemáticas' en 1986.
Magnus Wenninger - 'Polyhedron Models', Cambridge University Press.
Peter R. Cromwell - 'Polyhedra', Cambridge University Press, 1999.
H.Martin Cundy and A.P. Rollet, 'Mathematical Models', Oxford University Press, Second Edition, 1961.
W.W. Rouse Ball and H.S.M. Coxeter - 'Matematical Recreations & Essays', The MacMillan Company, 1947.

MÁS ENLACES

Dodecaedro rómbico (1): los panales de las abejas
La Humanidad ha estdo siempre fascinada por cómo las abejas construyen sus panales. Kepler relacionó la forma de los panales con un poliedro que llamamos dodecaedro rómbico.
Dodecaedro rómbico (2): Un problema de optimización en torno a los panales de las abejas
Queremos cerrar un prisma hexagonal como lo hacen las abejas, usando tres rombos iguales. ¿Qué forma deben tener estos tres rombos para cerrar el prisma con la menor superficie?
Dodecaedro rómbico (3): cubo con pirámides
Añadiendo seis pirámides a un cubo podemos construir nuevos poliedros que tienen veinticuatro caras triángulares. Para unas determinadas pirámides obtenemos un dodecaedro rómbico que tiene doce caras rómbicas.
Construcción de poliedros. Cuboctaedro y dodecaedro rómbico: Taller de Talento Matemático de Zaragoza. Curso 2013-2014.
Material para la sesión sobre construcción de poliedros (Zaragoza el 9 de Mayo de 2014). Empezaremos con el tetraedro, el cubo y el octaedro y presentaremos el cuboctaedro y el dodecaedro rómbico. Relacionaremos este poliedro con los panales de abeja. Construimos una cajita que es un dodecaedro rómbico.
Leonardo da Vinci: Dibujo del octaedro truncado para La Divina Proporción de Luca Pacioli
Leonardo da Vinci realizó varios dibujos de poliedros para La Divina Proporción de Luca Pacioli. Aquí podemos ver una adaptación de su octaedro truncado.
Leonardo da Vinci: Dibujo del cuboctaedro para La Divina Proporción de Luca Pacioli
Leonardo da Vinci realizó varios dibujos de poliedros para La Divina Proporción de Luca Pacioli. Aquí podemos ver una adaptación de su cuboctaedro.
Proporción del papel estándar DIN A
El papel que solemos utilizar tiene un tamaño estándar. Estos rectángulos de papel, que llamamos DIN A, son semejantes y cada tamaño se obtiene del anterior partiéndolo por la mitad.
El volumen del cuboctaedro
El cuboctaedro es un sólido arquimediano que se puede obtener a partir de un cubo truncando sus vértices.
El volumen del cuboctaedro (II)
El cuboctaedro es un sólido arquimediano que se puede obtener a partir de un cubo truncando sus vértices. También se obtiene a partir de un octaedro truncando sus vértices
El volumen del octaedro
El volumen del octaedro es 4 veces el del tetraedro. El cálculo del volumen del octaedro es sencillo y así podemos obtener el volumen del tetraedro.
El volumen del octaedro truncado
El octaedro truncado es un sólido arquimediano que se puede obtener a partir de un octaedro truncando sus vértices. Su volumen se puede calcular a partir del volumen del octaedro.
El octaedro truncado tesela el espacio
El octaedro truncado es un poliedro que tiene la propiedad de teselar el espacio: con poliedros congruentes podemos rellenar el espacio sin dejar huecos.
Cubo achaflanado
Achaflanando un cubo, truncando sus aristas, podemos obtener un poliedro semejante (pero no igual) al octaedro truncado. También podemos obtener un dodecaedro rómbico.
El dodecaedro y el cubo
Se puede inscribir un cubo en un dodecaedro y podemos ver el dodecaedro como un cubo con seis 'tejados' añadidos uno en cada cara. Estos seis tejados del dodecaedro se pueden plegar en un cubo.
Piritoedro
Si plegamos los seis tejadillos del dodecaedro dentro de un cubo queda un espacio vacío en el interior. Este espacio es un dodecaedro no regular con todas sus caras pentagonales iguales. Este dodecaedro es un caso particular de piritoedro.