El Teorema fundamental del Cálculo
Llegamos ahora a la conexión que haya entre integración y derivación. La relación entre estos dos procesos es, de algún modo, análoga a la que hay entre 'elevar al cuadrado' y la 'raíz cuadrada'. Si elevamos al cuadrado un número positivo y después tomamos la raíz cuadrada del resultado, obtenemos el número original. De igual modo, si integramos una función continua obtenemos una nueva función (una integral indefinida de f) y si diferenciamos esta función obtenemos la función original.(Apostol, pp. 202) Esta conexión entre diferenciación e integración es muy sorprendente. La integración está relacionada con la suma de muchos números pequeños (por ejemplo, cuando calculamos un área, la longitud de una curva, etc.) y la diferenciación es la tasa de variación instantánea (una interpretación gráfica de la derivada es la pendiente de la tangente a la curva). El Teorema Fundamental del Cálculo nos dice que estos dos conceptos están íntimamente relacionados.
Ya hemos visto varios ejemplos cuando diferenciamos e integramos funciones polinómicas pues ya vimos cierta relación. Sabemos que si f es integrable, entonces F(x) [una integral indefinida] es continua. Nos podemos preguntar que ocurre cuando la función original f es continua. Resulta que F es diferenciable (y que su derivada es especialmente simple).[Spivak]
(EL PRIMER TEOREMA FUNDAMENTAL DEL CÁLCULO) Sea f una función integrable en [a,b], y definimos una nueva función F en [a,b] por Si c pertecece a [a,b] y f es continua en c, entonces F es diferenciable en c, y Una demostración visual bien conocida asume que la función f es continua en un entorno del punto (esta es una condición más débil, la hipótesis del teorema es más fuerte. Para una demostración analítica más rigurosa de este teorema hay que leer un buen libro de Cálculo). Si c es un punto de (a,b), mirando la imagen podemos aceptar que Si h es suficientemente pequeño (o podemos usar un teorema de valor intermedio, para ser más precisos) Dividiendo entre h: Si f tiene mejores propiedades, por ejemplo, si f es continua en todos los puntos de [a,b], entonces F es diferenciable en todos los puntos de (a,b) y o La idea es que empezamos con una función f: Consideramos una integral indefinida F (arrastando el límite inferior de integración obteneos diferentes funciones integrales): En un punto diferenciamos esta función F (gráficamente estamos considerando la pendiente de la recta tangente): Entonces:
Este Teorema Fundamental del Cálculo nos dice que toda función continua tiene una antiderivada y nos muestra cómo construir una usando una integral indefinida. Incluso funciones no diferenciables con esquinas, tales como el valor absoluto tienen una antiderivada. Muchas veces el problema es cómo encontrar una antiderivada de una función, es decir, dada una función f(x), encontrar una función F(x) tal que F'(x) = f(x).
Un caso importante es cuando queremos integrar una función que tiene una antiderivada (o primitiva). Es decir, conocemos una función f y queremos integrar f' (o tenemos que integrar f' y podemos encontrar una primitiva f). En este caso, podemos ver la función que queremos integrar como una tasa de variación y la integral como un acumulador de este cambio (un ejemplo: la integral de la velocidad es la distancia recorrida). Definimos una función integral F (pero ahora estamos integrando f'): Entonces F es una primitiva de f', es decir:
Podemos ver que Un paso más y tendremos el Segundo Teorema Fundamental del Cálculo (o cómo evaluar integrales definidas). REFERENCIAS
Michael Spivak, Calculus, Third Edition, Publish-or-Perish, Inc.
Tom M. Apostol, Calculus, Second Edition, John Willey and Sons, Inc.
Otto Toeplitz, The Calculus, a genetic approach, The University of Chicago Press, 1963 (p. 95-99).
Kenneth A. Ross, Elementary Analysis: The Theory of Calculus, Springer-Verlag New York Inc., 1980 (p. 190).
Serge Lang, A First Course in Calculus, Third Edition, Addison-Wesley Publishing Company.
David M. Bressoud, Historical Reflections on Teaching the Fundamental Theorem of Calculus, American Mathematical Monthly 118 (2011).
Jorge M. López Martínez and Omar A. Hernández Rodríguez,Teaching the Fundamental Theorem of Calculus: A Historical Reflection in MathDL.
SIGUIENTE ANTERIOR MÁS ENLACES
Es fácil calcular el área bajo una línea recta y el eje de abcisas. Es un primer ejemplo de integración que nos permite entender la idea e introducir algunos conceptos básicos: integral como área, límites de integración, áreas positivas y negativas.
Calcular el área bajo una parábola es mucho más difícil que calcular áreas bajo una recta. Aquí mostramos como aproximar el área usando rectángulos y que una función integral de un polinomio de grado 2 es un polinomio de grado 3.
Arquímedes explica en 'El Método' cómo se puede utilizar la ley de la palanca para descubrir cuál es el área de un segmento parabólico.
La integral de las funciones potencia era conocida por Cavalieri para n=1 hasta n=9. Fermat, entre otros, fue capaz de resolver este problema. Su técnica es un buen ejemplo del uso de progresiones geométricas.
Si la derivada de F(x) es f(x) decimos que F es una antiderivada de f. También decimos que F es una primitiva o una integral indefinida de f.
La integral formaliza el concepto intuitivo de área. Para su definición aproximamos el área usando rectángulos.
Las funciones monótonas definidas en intervalos cerrados son interables. En estos casos podemos acotar el error que cometemos al aproximar la integral usando rectángulos.
Si consideramos el límite inferior de integración fijado y podemos calcular la integral definida para diferentes valores del límite superior de integración entonces podemos definir una nueva función: una integral indefinida de f.
Como una introducción a las funciones lineales a trozos estudiamos el caso más sencillo, las funciones lineales restringidas a un intervalo abierto: sus gráficas son segmentos.
Una función constante a trozos (o función escalonada) está definida por varias subfunciones que son funciones constantes.
Una función continua lineal a trozos se define con varios segmentos o rayos que están unidos de un modo continuo, sin saltos entre ellos.
Los polinomios de Lagrange son polinomios que pasan por n puntos dados. Usamos los polinomios de Lagrange para explorar funciones polinómicas más generales y sus derivadas.
Dos puntos determinan una línea recta. Como función son las funciones afines. Estudiaremos la pendiente de la recta y como podemos obtener la ecuación de la recta que pasa por dos puntos. Estudiaremos el corte con el eje de abcisas.
Potencias con exponente natural son funciones importantes pues son la base de los polinomios. Sus funciones inversas son las raíces que son funciones potencia con exponente racional positivo.
Las funciones cuadráticas son polinomios de grado 2. Sus gráficas son parábolas. Para encontrar los puntos de corte con el eje de abcisas tenemos que resolver una ecuación. El vértice de la parábola es un máximo o mínimo de la función.
Las funciones cúbicas son polinomios de grado 3. Una función cúbica real siempre corta al eje de abcisas por lo menos una vez.
Se trata de encontrar el polinomio de menor grado que pasa por una serie de puntos del plano. Es un problema de interpolación que aquí resolvemos usando los polinomios de Lagrange.
En su libro 'Sobre Conoides y Esferoides', Arquímedes calculó el área de la elipse. Podemos ver una aproximación intuitiva a las ideas de Arquímedes.
En su libro 'Sobre Conoides y Esferoides', Arquímedes calculó el área de la elipse. Es un ejemplo de demostración rigurosa por doble reducción al absurdo.
Kepler fue uno de los matemáticos que contribuyeron al origen del cálculo integral. Uso técnicas infinitesimales para calcular áreas y volúmenes.
|