matematicas visuales home | visual math home
Impresión 3d: El cubo y el octaedro
El cubo y el octaedro son poliedros duales

En esta página mostraremos construcciones del cubo y el octaedro que se pueden realizar fabricando sus vértices con una impresora 3d. Estudiaremos algunas propiedades de estos poliedros. En particular, que el cubo y el octaedro son poliedros duales.

El cubo

El cubo es un poliedro bien conocido.

Construcción de poliedros, impresión 3d: el cubo y el octaedro son poliedros duales | matematicasVisuales

Para modelar los vértices he usado OpenSCAD, un excelente programa libre.

Construcción de poliedros, impresión 3d: el cubo y el octaedro son poliedros duales | matematicasVisuales
Construcción de poliedros, impresión 3d: el cubo y el octaedro son poliedros duales | matematicasVisuales

Podemos contar sus caras(C), aristas (A) y vértices (V):

Algunos poliedros, en particular los regulares, pueden inscribirse en una esfera. Esta esfera se llama esfera circunscrita y toca todos los vértices del poliedro.

El radio de la circunferencia circunscrita se llama circunradio.

Para calcular el circunradio de un cubo podemos empezar calculando la diagonal d de una de sus caras:

Construcción de poliedros, impresión 3d: el cubo y el octaedro son poliedros duales | matematicasVisuales
Construcción de poliedros, impresión 3d: el cubo y el octaedro son poliedros duales | matematicasVisuales
DIN A ratio: trigonometry, angles | matematicasvisuales

Entonces la diagonal de un cubo (la diagonal en el espacio) D es un diámetro de la esfera circunscrita.

Construcción de poliedros, impresión 3d: el cubo y el octaedro son poliedros duales | matematicasVisuales
DIN A razón: trigonometría, ángulos | matematicasvisuales

Esta sección de un cubo está relacionada con la tamaño de papel estándar DinA:

Proporción del papel estándar DIN A
El papel que solemos utilizar tiene un tamaño estándar. Estos rectángulos de papel, que llamamos DIN A, son semejantes y cada tamaño se obtiene del anterior partiéndolo por la mitad.

Una diagonal de este rectángulo:

DIN A ratio: trigonometry, angles | matematicasvisuales
DIN A ratio: trigonometry, angles | matematicasvisuales

Podemos calcular D aplicando el Teoerema de Pitágoras:

DIN A ratio: trigonometry, angles | matematicasvisuales

Entonces el circunradio es:

También podemos inscribir una esfera en un cubo. Esta esfera se llama esfera inscrita y su radio es el inradio. Esta esfera es tangente a las caras del cubo.

El inradio es:

El octaedro

Construcción de poliedros, impresión 3d: el cubo y el octaedro son poliedros duales | matematicasVisuales

El volumen del octaedro
El volumen del octaedro es 4 veces el del tetraedro. El cálculo del volumen del octaedro es sencillo y así podemos obtener el volumen del tetraedro.
Desarrollos planos de cuerpos geométricos: Octaedro regular
El primer dibujo del desarrollo plano del octaedro regular fue publicado por Durero en su libro 'Underweysung der Messung' ('Los cuatro libros de la medida'), el año 1525.

Como en otras ocasiones, he usado OpenSCAD, para modelar los vértices:

Construcción de poliedros, impresión 3d: el cubo y el octaedro son poliedros duales | matematicasVisuales
Construcción de poliedros, impresión 3d: el cubo y el octaedro son poliedros duales | matematicasVisuales
Construcción de poliedros, impresión 3d: el cubo y el octaedro son poliedros duales | matematicasVisuales

Podemos contar sus caras(C), aristas (A) y vértices (V):

Vamos a calcular el circunradio de un octaedro.

Construcción de poliedros, impresión 3d: el cubo y el octaedro son poliedros duales. Circumsphere of an octahedron | matematicasVisuales

Podemos ver la altura de estas dos pirámides como la diagonal de un cuadrado.

Octahedron: an octahedron diagonal | matematicasvisuales
Octahedron: built plastic tubes | matematicasvisuales
The height of an octahedron is the diagonal of a square | matematicasvisuales

La diagonal de un cuadrado de arista 1 es:

El circunradio de un octaedro de arista a es:

El inradio de un octaedro es:

Construcción de poliedros, impresión 3d: el cubo y el octaedro son poliedros duales | matematicasVisuales
El cubo y el octaedro son poliedros duales

Los vértices de un cubo se corresponden con las caras de un octaedro y viceversa. Ambos tienen el mismo número de aristas.

Entonces podemos decir que el cubo y el octaedro son poliedros duales.

Una manera de construir un poliedro dual de un poliedro regular es unir los centros de caras contiguas.

Vamos a hacer esto con el cubo y el octaedro.

Un octaedro dentro de un cubo

Construcción de poliedros, impresión 3d: el cubo y el octaedro son poliedros duales | matematicasVisuales

Construcción de poliedros, impresión 3d: el cubo y el octaedro son poliedros duales | matematicasVisuales

Consideramos un octaedro que tiene arista l y la arista de un cubo es L. Entonces el circunradio del octaedro tiene que ser igual al inradio del cubo:

Construcción de poliedros, impresión 3d: el cubo y el octaedro son poliedros duales | matematicasVisuales

Así lo publicó Kepler:

Construcción de poliedros, impresión 3d: el cubo y el octaedro son poliedros duales | matematicasVisuales
Un cubo dentro de un octaedro

Construcción de poliedros, impresión 3d: el cubo y el octaedro son poliedros duales | matematicasVisuales

Consideramos un cubo de arista l y un octaedro de arista L. Entonces el circunradio de un cubo tiene que ser igual al inradio del octaedro:

Construcción de poliedros, impresión 3d: el cubo y el octaedro son poliedros duales | matematicasVisuales
Construcción de poliedros, impresión 3d: el cubo y el octaedro son poliedros duales | matematicasVisuales

Hay un modo sencillo de ver la relación entre las aristas del cubo inscrito l las aristas del octaedro L. Nos fijamos en estas imágenes:

Construcción de poliedros, impresión 3d: el cubo y el octaedro son poliedros duales | matematicasVisuales
Construcción de poliedros, impresión 3d: el cubo y el octaedro son poliedros duales | matematicasVisuales

Las cuatro aristas del cuadrado del medio pasan por cuatro baricentros de cuatro caras del octaedro grande.

Construcción de poliedros, impresión 3d: el cubo y el octaedro son poliedros duales | matematicasVisuales

REFERENCIAS

OpenSCAD es un excelente programa libre para modelar figuras en tres dimensiones.
Magnus Wenninger - 'Polyhedron Models', Cambridge University Press.
Gijs Korthals Altes: Modelos de poliedros en cartulina para descargar, recortar y pegar.
Carlos A. Furuti: Desarrollos de poliedros con mapas del mundo. Muchos desarrollos con proyecciones cartograficas. Una combinación muy buena.
Hugo Steinhaus - Mathematical Snapshots - Oxford University Press - Third Edition.
Peter R. Cromwell - 'Polyhedra', Cambridge University Press, 1999.
H.Martin Cundy and A.P. Rollet, 'Mathematical Models', Oxford University Press, Second Edition, 1961.
W.W. Rouse Ball and H.S.M. Coxeter - 'Matematical Recreations & Essays', The MacMillan Company, 1947.

MÁS ENLACES

Proporción del papel estándar DIN A
El papel que solemos utilizar tiene un tamaño estándar. Estos rectángulos de papel, que llamamos DIN A, son semejantes y cada tamaño se obtiene del anterior partiéndolo por la mitad.
El volumen del octaedro
El volumen del octaedro es 4 veces el del tetraedro. El cálculo del volumen del octaedro es sencillo y así podemos obtener el volumen del tetraedro.
Desarrollos planos de cuerpos geométricos: Octaedro regular
El primer dibujo del desarrollo plano del octaedro regular fue publicado por Durero en su libro 'Underweysung der Messung' ('Los cuatro libros de la medida'), el año 1525.
Construcción de poliedros. Técnicas sencillas: Discos de cartulina
Técnica simple para construir poliedros pegando discos de cartulina.
Recursos: Construcción de poliedros con cartulina y gomas elásticas
Si recortamos las caras sueltas de los poliedros podemos unirlas con gomas elásticas o pegamento y construir poliedros más complicados y con varios colores.
Construcción de poliedros. Técnicas sencillas: Cara a cara con cartulina
Si recortamos las caras sueltas de los poliedros podemos unirlas con pegamento y construir poliedros. Puedes descargar varias plantillas con diferentes polígonos. Es una técnica muy sencilla para construir poliedros muy vistosos e interesantes.
Construcción de poliedros : El rectángulo áureo y el icosaedro
Con tres rectángulos áureos podemos construir un icosaedro.
Construcción de poliedros. Técnicas sencillas: desarrollos en cartulina
Podemos dibujar los desarrollos planos en cartulina y construir poliedros uniendo solapas con pegamento.
Construcción de poliedros. Técnicas sencillas: Origami modular
El origami modular es una técnica preciosa que consiste en plegar varias unidades independientes que se unen sin pegamento para formar poliedros.
Construcción de poliedros. Técnicas sencillas: Tubos
Tubos de plástico o aluminio unidos son muy útiles para construir esqueletos de poliedros.
Construcción de poliedros. Técnicas sencillas: Tensegrity
Tensegrity es la construcción de estructuras con tensores o elementos elásticos. Es un placer construir y tocar estos poliedros elásticos.
Construcción de poliedros. Técnicas sencillas: Zome
Zome es un conjunto de piezas de plástico ideal para construir poliedros desmontables. De las infinitas posibilidades de Zome, aquí lo usamos para calcular el volumen del dodecaedro.
Construcción de poliedros. Técnicas sencillas: Taller de Talento Matemático de Zaragoza
Material para la sesión sobre construcción de poliedros que se realizó en Zaragoza el 13 de Abril de 2012. El objetivo es disfrutar haciendo poliedros y obtener alguna conclusión matemática a partir de esas construcciones.
Construcción de poliedros. Cuboctaedro y dodecaedro rómbico: Taller de Talento Matemático de Zaragoza. Curso 2013-2014.
Material para la sesión sobre construcción de poliedros (Zaragoza el 9 de Mayo de 2014). Empezaremos con el tetraedro, el cubo y el octaedro y presentaremos el cuboctaedro y el dodecaedro rómbico. Relacionaremos este poliedro con los panales de abeja. Construimos una cajita que es un dodecaedro rómbico.
El cubo, el octaedro, el tetraedro y otros poliedros: Taller de Talento Matemático de Zaragoza. Curso 2014-2015.
Material para la sesión sobre poliedros (Zaragoza el 7 de Noviembre de 2014). Estudiaremos el volumen del octaedro y del tetraedro y veremos que el octaedro truncado nos puede ayudar en esta tarea. Construimos una cubo de cartulina con un tetraedro de origami modular en su interior.
Poliedros duales: el cubo y el octaedro. Taller de Talento Matemático de Zaragoza. Curso 2015-2016.
Material para la sesión del TTM (Zaragoza el 23 de Octubre de 2015) . Estudiamos la dualidad de poliedros y, en particular, los poliedros platónicos duales. Construimos una cubo de cartulina con un octaedro de origami modular.
El cuboctaedro y el octaedro truncado. Taller de Talento Matemático de Zaragoza, España. Curso 2016-2017 XIII edición.
Material para la sesión del TTM (Zaragoza, el 21 de Octubre de 2016). Con plantillas para descargar y construir varias figuras geométricas.
Acona Biconbi, diseño de Bruno Munari
El diseñador italiano Bruno Munari pensó 'Acona Biconbi' como un trabajo de escultura. También es un juego de construcción con el que podemos jugar con colores y formas.
Secciones en un tetraedro
Haciendo adecuadamente secciones en un tetraedro obtenemos rectángulos y, en algún caso, un cuadrado. Podemos calcular el área de esas secciones.
El icosaedro y su volumen
Los veinte vértices de un icosaedro están en tres rectángulos áureos. A partir de esta propiedad podemos calcular el volumen del icosaedro.
El dodecaedro regular
Algunas propiedades de este sólido platónico y su relación con la razón áurea. Construcción de dodecaedros (y otros poliedros relacionados) usando diferentes técnicas.