matematicas visuales home | visual math home

El octaedro regular es un poliedro que tiene ocho caras que son triángulos equiláteros, seis vértices y doce aristas.

Es un sólido de los llamados platónicos y es bien conocido desde la Antigüedad.

Desarrollo plano de octaedro: un octaedro | matematicasVisuales
El volumen del octaedro
El volumen del octaedro es 4 veces el del tetraedro. El cálculo del volumen del octaedro es sencillo y así podemos obtener el volumen del tetraedro.

Leonardo da Vinci dibujó dos octaedros para el libro de Luca Pacioli 'De Divina Proportione' (pubicado en 1509).

Leonardo da Vinci: Dibujo del octaedro para La Divina Proporción de Luca Pacioli
Leonardo da Vinci realizó varios dibujos de poliedros para La Divina Proporción de Luca Pacioli. Aquí podemos ver una adaptación de su octaedro.

Pero fue Durero el primero en publicar desarrollos planos de poliedros. En su libro 'Underweysung der Messung' ('Cuatro Libros de la Medida', publicado en 1525) el autor dibujó desarrollos planos de los cinco sólidos platónicos y de otros poliedros (entre ellos, varios sólidos arquimedianos). Por ejemplo, este octaedro regular:

Desarrollo plano de octaedro: desarrollo plano de un octaedro, dibujado por Durero | matematicasVisuales

"El que Durero estuviera o no al corriente del trabajo de los dos italianos especialistas en este campo, Luca Pacioli y Piero della Frascesca, es una cuestión abierta. Lo cierto es que (...) abordó el problema de una manera completamente independiente. Pacioli (...) los ilustró [varios poliedros] con imágenes en perspectiva o estereográficas. Durero trató (...)[más poliedros] y, en lugar de representar estos sólidos en perspectiva o con imágenes estereográficas, ideó un método original y, se puede decir proto-topológico, desarrollándolos en una superficie plana de modo que sus caras formen una 'red' coherente la cual, cuando la cortamos en papel y la plegamos y unimos adecuadamente sus caras, formará un modelo tridimensional del sólido en cuestión." (Panofsky, p.259)

Jugando con la aplicación interactiva podemos ver cómo el octaedro se transforma en su desarrollo plano.

Desarrollo plano de octaedro: desarrollando un octaedro | matematicasVisuales
Desarrollo plano de octaedro: desarrollando un octaedro | matematicasVisuales
Desarrollo plano de octaedro: desarrollando un octaedro | matematicasVisuales
Desarrollo plano de octaedro: desarrollo plano del octaedro | matematicasVisuales

Podemos descargarnos el desarrollo de un octaedro y construir con cartulina nuestra figura.

Desarrollo plano de octaedro: figura de un octaedro hecho con cartulina | matematicasVisuales

INVESTIGA

El octaedro está relacionado con otros poliedros.

El octaedro y el cubo son poliedros duales:

Desarrollo plano de octaedro: el octaedro y el cubo son poliedros duales | matematicasVisuales

Kepler dibujó un octaedro dentro de un cubo mostrando que las caras de uno de estos poliedros se corresponden con los vértices del otro.

Desarrollo plano de octaedro: Kepler dibujó un octaedro dentro de un cubo | matematicasVisuales

El cubo y el octaedro se pueden colocar en lo que llamamos 'posición recíproca'. La figura formada es una estelación del cuboctaedro.

Desarrollo plano de octaedro: cubo y octaedro en posición recíproca. Estelación del cuboctaedro | matematicasVisuales
El volumen del cuboctaedro (II)
El cuboctaedro es un sólido arquimediano que se puede obtener a partir de un cubo truncando sus vértices. También se obtiene a partir de un octaedro truncando sus vértices

La estelación del octaedro es el poliedro que Kepler llamó 'Stella Octangula':

Desarrollo plano de octaedro: Stella octangula, estelación de un octaedro, dentro de un cubo | matematicasVisuales

Desarrollo plano de octaedro: Stella octangula, estelación de un octaedro | matematicasVisuales
El volumen del octaedro estrellado (stella octangula)
El octaedro estrellado fue dibujado por Leonardo para el libro 'La divina proporción' de Luca Pacioli. Años más tarde, Kepler nombró este poliedro stella octangula.

Si truncamos adecuadamente un octaedro obtenemos un sólido arquimediano que tiene propiedades muy interesantes:

Desarrollo plano de octaedro: octaedro truncado | matematicasVisuales
Desarrollo plano de octaedro: octadro truncado | matematicasVisuales
Desarrollo plano de octaedro: truncamientos del cubo y del octaedro | matematicasVisuales
El volumen del octaedro truncado
El octaedro truncado es un sólido arquimediano que se puede obtener a partir de un octaedro truncando sus vértices. Su volumen se puede calcular a partir del volumen del octaedro.

Podemos obtener un octaedro truncando un tetraedro:

Desarrollo plano de octaedro: el octaedro como un truncamiento del tetraedro | matematicasVisuales
Desarrollo plano de octaedro: el octaedro como un truncamiento del tetraedro | matematicasVisuales
Desarrollo plano de octaedro: el octaedro como un truncamiento del tetraedro | matematicasVisuales

REFERENCIAS

Magnus Wenninger - 'Polyhedron Models', Cambridge University Press.
Peter R. Cromwell - 'Polyhedra', Cambridge University Press, 1999.
H.Martin Cundy and A.P. Rollet, 'Mathematical Models', Oxford University Press, Second Edition, 1961.
Erwin Panofsky - The Life and Art of Albrecht Dürer - Princeton University Press
Dan Pedoe - Geometry and the Liberal Arts - St. Martin's Press (p. 76)
Hugo Steinhaus - Mathematical Snapshots - Oxford University Press - Third Edition (p. 197)
W.W. Rouse Ball and H.S.M. Coxeter - 'Matematical Recreations & Essays', The MacMillan Company, 1947.

MÁS ENLACES

Leonardo da Vinci: Dibujo del octaedro para La Divina Proporción de Luca Pacioli
Leonardo da Vinci realizó varios dibujos de poliedros para La Divina Proporción de Luca Pacioli. Aquí podemos ver una adaptación de su octaedro.
Desarrollos planos de cuerpos geométricos: Tetraedro regular
El primer dibujo del desarrollo plano del tetraedro regular fue publicado por Durero en su libro 'Underweysung der Messung' ('Los cuatro libros de la medida'), el año 1525.
Construcción de poliedros. Técnicas sencillas: desarrollos en cartulina
Podemos dibujar los desarrollos planos en cartulina y construir poliedros uniendo solapas con pegamento.
Recursos: Construcción de poliedros con cartulina y gomas elásticas
Si recortamos las caras sueltas de los poliedros podemos unirlas con gomas elásticas o pegamento y construir poliedros más complicados y con varios colores.
Construcción de poliedros. Técnicas sencillas: Cara a cara con cartulina
Si recortamos las caras sueltas de los poliedros podemos unirlas con pegamento y construir poliedros. Puedes descargar varias plantillas con diferentes polígonos. Es una técnica muy sencilla para construir poliedros muy vistosos e interesantes.
Construcción de poliedros. Técnicas sencillas: Tensegrity
Tensegrity es la construcción de estructuras con tensores o elementos elásticos. Es un placer construir y tocar estos poliedros elásticos.
Construcción de poliedros. Técnicas sencillas: Taller de Talento Matemático de Zaragoza
Material para la sesión sobre construcción de poliedros que se realizó en Zaragoza el 13 de Abril de 2012. El objetivo es disfrutar haciendo poliedros y obtener alguna conclusión matemática a partir de esas construcciones.
Construcción de poliedros. Cuboctaedro y dodecaedro rómbico: Taller de Talento Matemático de Zaragoza. Curso 2013-2014.
Material para la sesión sobre construcción de poliedros (Zaragoza el 9 de Mayo de 2014). Empezaremos con el tetraedro, el cubo y el octaedro y presentaremos el cuboctaedro y el dodecaedro rómbico. Relacionaremos este poliedro con los panales de abeja. Construimos una cajita que es un dodecaedro rómbico.
El cubo, el octaedro, el tetraedro y otros poliedros: Taller de Talento Matemático de Zaragoza. Curso 2014-2015.
Material para la sesión sobre poliedros (Zaragoza el 7 de Noviembre de 2014). Estudiaremos el volumen del octaedro y del tetraedro y veremos que el octaedro truncado nos puede ayudar en esta tarea. Construimos una cubo de cartulina con un tetraedro de origami modular en su interior.
Poliedros duales: el cubo y el octaedro. Taller de Talento Matemático de Zaragoza. Curso 2015-2016.
Material para la sesión del TTM (Zaragoza el 23 de Octubre de 2015) . Estudiamos la dualidad de poliedros y, en particular, los poliedros platónicos duales. Construimos una cubo de cartulina con un octaedro de origami modular.
Construcción de poliedros. Técnicas sencillas: Zome
Zome es un conjunto de piezas de plástico ideal para construir poliedros desmontables. De las infinitas posibilidades de Zome, aquí lo usamos para calcular el volumen del dodecaedro.
Desarrollos planos de cuerpos geométricos (1): Prismas y sus desarrollos planos
Estudiamos los prismas y vemos cómo se pueden desarrollar en un plano. Se explica el cálculo del área lateral de un prisma recto.
Desarrollos planos de cuerpos geométricos (3): Cilindros
Los cilindros son superficies de revolución que pueden desarrollarse en un plano. Se explica cómo calcular la superficie lateral y total de un cilindro.
Desarrollos planos de cuerpos geométricos (5): Pirámides y troncos de pirámide
Desarrollos planos de pirámides y de troncos de pirámide de base regular con diferentes números de lados.
Desarrollos planos de cuerpos geométricos (7): Conos y troncos de conos
Desarrollos planos de conos y troncos de cono. Cálculo del área lateral de estas figuras.
Desarrollos planos de cuerpos geométricos (2): Prismas cortados por un plano oblicuo
Prismas con base regular o irregular cortados por un plano no paralelo a la base y sus desarrollos planos.
Desarrollos planos de cuerpos geométricos (4): Cilindros cortados por un plano oblicuo
La sección de un cilindro por un plano es una elipse. Estas figuras se llaman segmentos cilíndricos o cilindros truncados y pueden desarrollarse en el plano.
Desarrollos planos de cuerpos geométricos (6): Pirámides truncadas por un plano oblicuo
Desarrollos planos de pirámides truncadas por un plano oblicuo.
Desarrollos planos de cuerpos geométricos (8): Conos truncados por un plano oblicuo
Desarrollos planos de conos truncados por un plano oblicuo. La sección es una elipse.
El octaedro truncado formado por medios cubos
Con medios cubos podemos formar el octaedro truncado. El cubo tesela el espacio y también el octaedro truncado. También calculamos su volumen.
El octaedro truncado tesela el espacio
El octaedro truncado es un poliedro que tiene la propiedad de teselar el espacio: con poliedros congruentes podemos rellenar el espacio sin dejar huecos.
El volumen del octaedro truncado
El octaedro truncado es un sólido arquimediano que se puede obtener a partir de un octaedro truncando sus vértices. Su volumen se puede calcular a partir del volumen del octaedro.
El volumen del cuboctaedro
El cuboctaedro es un sólido arquimediano que se puede obtener a partir de un cubo truncando sus vértices.
El volumen del cuboctaedro (II)
El cuboctaedro es un sólido arquimediano que se puede obtener a partir de un cubo truncando sus vértices. También se obtiene a partir de un octaedro truncando sus vértices
El volumen del octaedro estrellado (stella octangula)
El octaedro estrellado fue dibujado por Leonardo para el libro 'La divina proporción' de Luca Pacioli. Años más tarde, Kepler nombró este poliedro stella octangula.
Leonardo da Vinci: Dibujo del dodecaedro para La Divina Proporción de Luca Pacioli
Leonardo da Vinci realizó varios dibujos de poliedros para La Divina Proporción de Luca Pacioli. Aquí podemos ver una adaptación de su dodecaedro.
Leonardo da Vinci: Dibujo del octaedro truncado para La Divina Proporción de Luca Pacioli
Leonardo da Vinci realizó varios dibujos de poliedros para La Divina Proporción de Luca Pacioli. Aquí podemos ver una adaptación de su octaedro truncado.
Leonardo da Vinci: Dibujo del cuboctaedro para La Divina Proporción de Luca Pacioli
Leonardo da Vinci realizó varios dibujos de poliedros para La Divina Proporción de Luca Pacioli. Aquí podemos ver una adaptación de su cuboctaedro.
Leonardo da Vinci: Dibujo del octaedro estrellado (Stella Octangula)  para La Divina Proporción de Luca Pacioli
Leonardo da Vinci realizó varios dibujos de poliedros para La Divina Proporción de Luca Pacioli. Aquí podemos ver una adaptación de su octaedro estrellado (que Kepler llamó stella octangula).
Leonardo da Vinci: Dibujo del tetraedro truncado para La Divina Proporción de Luca Pacioli
Leonardo da Vinci realizó varios dibujos de poliedros para La Divina Proporción de Luca Pacioli. Aquí podemos ver una adaptación de su tetraedro truncado.